Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38326557

RESUMO

CDKL5 is a brain-enriched serine/threonine kinase, associated with a profound developmental and epileptic encephalopathy called CDKL5 deficiency disorder (CDD). To design targeted therapies for CDD, it is essential to determine where CDKL5 is expressed and is active in the brain and test if compensatory mechanisms exist at cellular level. We generated conditional Cdkl5 knockout mice in excitatory neurons, inhibitory neurons and astrocytes. To assess CDKL5 activity, we utilized a phosphospecific antibody for phosphorylated EB2, a well-known substrate of CDKL5. We found that CDKL5 and EB2 pS222 were prominent in excitatory and inhibitory neurons but were not detected in astrocytes. We observed that approximately 15-20% of EB2 pS222 remained in Cdkl5 knockout brains and primary neurons. Surprisingly, the remaining phosphorylation was modulated by NMDA and PP1/PP2A in neuronal CDKL5 knockout cultures, indicating the presence of a compensating kinase. Using a screen of candidate kinases with highest homology to the CDKL5 kinase domain, we found that CDKL2 and ICK can phosphorylate EB2 S222 in HEK293T cells and in primary neurons. We then generated Cdkl5/Cdkl2 dual knockout mice to directly test if CDKL2 phosphorylates EB2 in vivo and found that CDKL2 phosphorylates CDKL5 substrates in the brain. This study is the first indication that CDKL2 could potentially replace CDKL5 functions in the brain, alluding to novel therapeutic possibilities.

2.
Nat Commun ; 14(1): 7830, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081835

RESUMO

Developmental and epileptic encephalopathies (DEEs) are a group of rare childhood disorders characterized by severe epilepsy and cognitive deficits. Numerous DEE genes have been discovered thanks to advances in genomic diagnosis, yet putative molecular links between these disorders are unknown. CDKL5 deficiency disorder (CDD, DEE2), one of the most common genetic epilepsies, is caused by loss-of-function mutations in the brain-enriched kinase CDKL5. To elucidate CDKL5 function, we looked for CDKL5 substrates using a SILAC-based phosphoproteomic screen. We identified the voltage-gated Ca2+ channel Cav2.3 (encoded by CACNA1E) as a physiological target of CDKL5 in mice and humans. Recombinant channel electrophysiology and interdisciplinary characterization of Cav2.3 phosphomutant mice revealed that loss of Cav2.3 phosphorylation leads to channel gain-of-function via slower inactivation and enhanced cholinergic stimulation, resulting in increased neuronal excitability. Our results thus show that CDD is partly a channelopathy. The properties of unphosphorylated Cav2.3 closely resemble those described for CACNA1E gain-of-function mutations causing DEE69, a disorder sharing clinical features with CDD. We show that these two single-gene diseases are mechanistically related and could be ameliorated with Cav2.3 inhibitors.


Assuntos
Epilepsia , Síndromes Epilépticas , Espasmos Infantis , Animais , Criança , Humanos , Camundongos , Canais de Cálcio/genética , Epilepsia/genética , Síndromes Epilépticas/genética , Proteínas Serina-Treonina Quinases/genética , Espasmos Infantis/genética
3.
Nat Commun ; 14(1): 5496, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679383

RESUMO

PGC-1α plays a central role in maintaining mitochondrial and energy metabolism homeostasis, linking external stimuli to transcriptional co-activation of genes involved in adaptive and age-related pathways. The carboxyl-terminus encodes a serine/arginine-rich (RS) region and an RNA recognition motif, however the RNA-processing function(s) were poorly investigated over the past 20 years. Here, we show that the RS domain of human PGC-1α directly interacts with RNA and the nuclear RNA export receptor NXF1. Inducible depletion of PGC-1α and expression of RNAi-resistant RS-deleted PGC-1α further demonstrate that its RNA/NXF1-binding activity is required for the nuclear export of some canonical mitochondrial-related mRNAs and mitochondrial homeostasis. Genome-wide investigations reveal that the nuclear export function is not strictly linked to promoter-binding, identifying in turn novel regulatory targets of PGC-1α in non-homologous end-joining and nucleocytoplasmic transport. These findings provide new directions to further elucidate the roles of PGC-1α in gene expression, metabolic disorders, aging and neurodegeneration.


Assuntos
Transporte de RNA , RNA , Humanos , Transporte Ativo do Núcleo Celular , Expressão Gênica , Homeostase
4.
Elife ; 122023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37490324

RESUMO

Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 (CDKL5) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual, and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD has indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3ß, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3ß activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3ß activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3ß. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces postsynaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity, and human neuropathology.


Assuntos
Hipocampo , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Humanos , Glicogênio Sintase Quinase 3 beta/genética , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , Hipocampo/metabolismo , Quinases Ciclina-Dependentes
5.
Trends Neurosci ; 46(8): 611-613, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37230852

RESUMO

A recent study by Beeman et al. exploring disease-related missense mutations in TAOK1 revealed a self-regulating association of the kinase with the plasma membrane that is critical for neuronal morphogenesis. Using a combination of in vitro approaches and elegant in silico modeling, the authors describe an aberrant membrane protrusions phenotype in kinase-deficient mutants reminiscent of TAOK2's indirect regulation of neuronal morphology, thus providing a converging patho-mechanism across several neurodevelopmental disorders.


Assuntos
Transtornos do Neurodesenvolvimento , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transtornos do Neurodesenvolvimento/genética
6.
ACS Chem Neurosci ; 14(9): 1672-1685, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37084253

RESUMO

Despite mediating several essential processes in the brain, including during development, cyclin-dependent kinase-like 5 (CDKL5) remains a poorly characterized human protein kinase. Accordingly, its substrates, functions, and regulatory mechanisms have not been fully described. We realized that availability of a potent and selective small molecule probe targeting CDKL5 could enable illumination of its roles in normal development as well as in diseases where it has become aberrant due to mutation. We prepared analogs of AT-7519, a compound that has advanced to phase II clinical trials and is a known inhibitor of several cyclin-dependent kinases (CDKs) and cyclin-dependent kinase-like kinases (CDKLs). We identified analog 2 as a highly potent and cell-active chemical probe for CDKL5/GSK3 (glycogen synthase kinase 3). Evaluation of its kinome-wide selectivity confirmed that analog 2 demonstrates excellent selectivity and only retains GSK3α/ß affinity. We next demonstrated the inhibition of downstream CDKL5 and GSK3α/ß signaling and solved a co-crystal structure of analog 2 bound to human CDKL5. A structurally similar analog (4) proved to lack CDKL5 affinity and maintain potent and selective inhibition of GSK3α/ß, making it a suitable negative control. Finally, we used our chemical probe pair (2 and 4) to demonstrate that inhibition of CDKL5 and/or GSK3α/ß promotes the survival of human motor neurons exposed to endoplasmic reticulum stress. We have demonstrated a neuroprotective phenotype elicited by our chemical probe pair and exemplified the utility of our compounds to characterize the role of CDKL5/GSK3 in neurons and beyond.


Assuntos
Quinase 3 da Glicogênio Sintase , Transdução de Sinais , Humanos , Transdução de Sinais/fisiologia , Neurônios , Quinases Ciclina-Dependentes , Proteínas Serina-Treonina Quinases
7.
bioRxiv ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798313

RESUMO

Despite mediating several essential processes in the brain, including during development, cyclin-dependent kinase-like 5 (CDKL5) remains a poorly characterized human protein kinase. Accordingly, its substrates, functions, and regulatory mechanisms have not been fully described. We realized that availability of a potent and selective small molecule probe targeting CDKL5 could enable illumination of its roles in normal development as well as in diseases where it has become aberrant due to mutation. We prepared analogs of AT-7519, a known inhibitor of several cyclin dependent and cyclin-dependent kinase-like kinases that has been advanced into Phase II clinical trials. We identified analog 2 as a highly potent and cell-active chemical probe for CDKL5/GSK3 (glycogen synthase kinase 3). Evaluation of its kinome-wide selectivity confirmed that analog 2 demonstrates excellent selectivity and only retains GSK3α/ß affinity. As confirmation that our chemical probe is a high-quality tool to use in directed biological studies, we demonstrated inhibition of downstream CDKL5 and GSK3α/ß signaling and solved a co-crystal structure of analog 2 bound to CDKL5. A structurally similar analog ( 4 ) proved to lack CDKL5 affinity and maintain potent and selective inhibition of GSK3α/ß. Finally, we used our chemical probe pair ( 2 and 4 ) to demonstrate that inhibition of CDKL5 and/or GSK3α/ß promotes the survival of human motor neurons exposed to endoplasmic reticulum (ER) stress. We have demonstrated a neuroprotective phenotype elicited by our chemical probe pair and exemplified the utility of our compounds to characterize the role of CDKL5/GSK3 in neurons and beyond.

8.
Life Sci Alliance ; 6(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36446521

RESUMO

Autophagy is essential for neuronal development and its deregulation contributes to neurodegenerative diseases. NDR1 and NDR2 are highly conserved kinases, implicated in neuronal development, mitochondrial health and autophagy, but how they affect mammalian brain development in vivo is not known. Using single and double Ndr1/2 knockout mouse models, we show that only dual loss of Ndr1/2 in neurons causes neurodegeneration. This phenotype was present when NDR kinases were deleted both during embryonic development, as well as in adult mice. Proteomic and phosphoproteomic comparisons between Ndr1/2 knockout and control brains revealed novel kinase substrates and indicated that endocytosis is significantly affected in the absence of NDR1/2. We validated the endocytic protein Raph1/Lpd1, as a novel NDR1/2 substrate, and showed that both NDR1/2 and Raph1 are critical for endocytosis and membrane recycling. In NDR1/2 knockout brains, we observed prominent accumulation of transferrin receptor, p62 and ubiquitinated proteins, indicative of a major impairment of protein homeostasis. Furthermore, the levels of LC3-positive autophagosomes were reduced in knockout neurons, implying that reduced autophagy efficiency mediates p62 accumulation and neurotoxicity. Mechanistically, pronounced mislocalisation of the transmembrane autophagy protein ATG9A at the neuronal periphery, impaired axonal ATG9A trafficking and increased ATG9A surface levels further confirm defects in membrane trafficking, and could underlie the impairment in autophagy. We provide novel insight into the roles of NDR1/2 kinases in maintaining neuronal health.


Assuntos
Autofagia , Proteômica , Feminino , Gravidez , Animais , Camundongos , Autofagossomos , Neurônios , Proteostase , Proteínas de Membrana/genética , Mamíferos
9.
J Biol Chem ; 299(1): 102788, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509146

RESUMO

Mechanistic target of rapamycin (mTOR) is a protein kinase that integrates multiple inputs to regulate anabolic cellular processes. For example, mTOR complex 1 (mTORC1) has key functions in growth control, autophagy, and metabolism. However, much less is known about the signaling components that act downstream of mTORC1 to regulate cellular morphogenesis. Here, we show that the RNA-binding protein Unkempt, a key regulator of cellular morphogenesis, is a novel substrate of mTORC1. We show that Unkempt phosphorylation is regulated by nutrient levels and growth factors via mTORC1. To analyze Unkempt phosphorylation, we immunoprecipitated Unkempt from cells in the presence or the absence of the mTORC1 inhibitor rapamycin and used mass spectrometry to identify mTORC1-dependent phosphorylated residues. This analysis showed that mTORC1-dependent phosphorylation is concentrated in a serine-rich intrinsically disordered region in the C-terminal half of Unkempt. We also found that Unkempt physically interacts with and is directly phosphorylated by mTORC1 through binding to the regulatory-associated protein of mTOR, Raptor. Furthermore, analysis in the developing brain of mice lacking TSC1 expression showed that phosphorylation of Unkempt is mTORC1 dependent in vivo. Finally, mutation analysis of key serine/threonine residues in the serine-rich region indicates that phosphorylation inhibits the ability of Unkempt to induce a bipolar morphology. Phosphorylation within this serine-rich region thus profoundly affects the ability of Unkempt to regulate cellular morphogenesis. Taken together, our findings reveal a novel molecular link between mTORC1 signaling and cellular morphogenesis.


Assuntos
Proteínas de Transporte , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteína Regulatória Associada a mTOR , Serina-Treonina Quinases TOR , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Morfogênese , Fosforilação , Serina/metabolismo , Sirolimo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Processos de Crescimento Celular , Proteínas de Transporte/metabolismo
10.
Front Mol Neurosci ; 15: 1005631, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226315

RESUMO

Mechanistic target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that regulates fundamental cellular processes including growth control, autophagy and metabolism. mTOR has key functions in nervous system development and mis-regulation of mTOR signaling causes aberrant neurodevelopment and neurological diseases, collectively called mTORopathies. In this mini review we discuss recent studies that have deepened our understanding of the key roles of the mTOR pathway in human nervous system development and disease. Recent advances in single-cell transcriptomics have been exploited to reveal specific roles for mTOR signaling in human cortical development that may have contributed to the evolutionary divergence from our primate ancestors. Cerebral organoid technology has been utilized to show that mTOR signaling is active in and regulates outer radial glial cells (RGCs), a population of neural stem cells that distinguish the human developing cortex. mTOR signaling has a well-established role in hamartoma syndromes such as tuberous sclerosis complex (TSC) and other mTORopathies. New ultra-sensitive techniques for identification of somatic mTOR pathway mutations have shed light on the neurodevelopmental origin and phenotypic heterogeneity seen in mTORopathy patients. These emerging studies suggest that mTOR signaling may facilitate developmental processes specific to human cortical development but also, when mis-regulated, cause cortical malformations and neurological disease.

11.
Sci Adv ; 7(18)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33931449

RESUMO

Synaptic vesicle (SV) release probability (Pr), determines the steady state and plastic control of neurotransmitter release. However, how diversity in SV composition arises and regulates the Pr of individual SVs is not understood. We found that modulation of the copy number of the noncanonical vesicular SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor), vesicle-associated membrane protein 4 (VAMP4), on SVs is key for regulating Pr. Mechanistically, this is underpinned by its reduced ability to form an efficient SNARE complex with canonical plasma membrane SNAREs. VAMP4 has unusually high synaptic turnover and is selectively sorted to endolysosomes during activity-dependent bulk endocytosis. Disruption of endolysosomal trafficking and function markedly increased the abundance of VAMP4 in the SV pool and inhibited SV fusion. Together, our results unravel a new mechanism for generating SV heterogeneity and control of Pr through coupling of SV recycling to a major clearing system that regulates protein homeostasis.

13.
Sci Transl Med ; 12(551)2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641489

RESUMO

Cyclin-dependent-like kinase 5 (CDKL5) gene mutations lead to an X-linked disorder that is characterized by infantile epileptic encephalopathy, developmental delay, and hypotonia. However, we found that a substantial percentage of these patients also report a previously unrecognized anamnestic deficiency in pain perception. Consistent with a role in nociception, we found that CDKL5 is expressed selectively in nociceptive dorsal root ganglia (DRG) neurons in mice and in induced pluripotent stem cell (iPS)-derived human nociceptors. CDKL5-deficient mice display defective epidermal innervation, and conditional deletion of CDKL5 in DRG sensory neurons impairs nociception, phenocopying CDKL5 deficiency disorder in patients. Mechanistically, CDKL5 interacts with calcium/calmodulin-dependent protein kinase II α (CaMKIIα) to control outgrowth and transient receptor potential cation channel subfamily V member 1 (TRPV1)-dependent signaling, which are disrupted in both CDKL5 mutant murine DRG and human iPS-derived nociceptors. Together, these findings unveil a previously unrecognized role for CDKL5 in nociception, proposing an original regulatory mechanism for pain perception with implications for future therapeutics in CDKL5 deficiency disorder.


Assuntos
Células Receptoras Sensoriais , Transdução de Sinais , Animais , Ciclinas , Modelos Animais de Doenças , Humanos , Camundongos , Dor , Proteínas Serina-Treonina Quinases/genética
14.
Nat Commun ; 11(1): 2380, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404936

RESUMO

YAP1 gene fusions have been observed in a subset of paediatric ependymomas. Here we show that, ectopic expression of active nuclear YAP1 (nlsYAP5SA) in ventricular zone neural progenitor cells using conditionally-induced NEX/NeuroD6-Cre is sufficient to drive brain tumour formation in mice. Neuronal differentiation is inhibited in the hippocampus. Deletion of YAP1's negative regulators LATS1 and LATS2 kinases in NEX-Cre lineage in double conditional knockout mice also generates similar tumours, which are rescued by deletion of YAP1 and its paralog TAZ. YAP1/TAZ-induced mouse tumours display molecular and ultrastructural characteristics of human ependymoma. RNA sequencing and quantitative proteomics of mouse tumours demonstrate similarities to YAP1-fusion induced supratentorial ependymoma. Finally, we find that transcriptional cofactor HOPX is upregulated in mouse models and in human YAP1-fusion induced ependymoma, supporting their similarity. Our results show that uncontrolled YAP1/TAZ activity in neuronal precursor cells leads to ependymoma-like tumours in mice.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ependimoma/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteínas de Ciclo Celular/genética , Criança , Ependimoma/genética , Ependimoma/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Varredura , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP
15.
EMBO J ; 37(24)2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30266824

RESUMO

Loss-of-function mutations in CDKL5 kinase cause severe neurodevelopmental delay and early-onset seizures. Identification of CDKL5 substrates is key to understanding its function. Using chemical genetics, we found that CDKL5 phosphorylates three microtubule-associated proteins: MAP1S, EB2 and ARHGEF2, and determined the phosphorylation sites. Substrate phosphorylations are greatly reduced in CDKL5 knockout mice, verifying these as physiological substrates. In CDKL5 knockout mouse neurons, dendritic microtubules have longer EB3-labelled plus-end growth duration and these altered dynamics are rescued by reduction of MAP1S levels through shRNA expression, indicating that CDKL5 regulates microtubule dynamics via phosphorylation of MAP1S. We show that phosphorylation by CDKL5 is required for MAP1S dissociation from microtubules. Additionally, anterograde cargo trafficking is compromised in CDKL5 knockout mouse dendrites. Finally, EB2 phosphorylation is reduced in patient-derived human neurons. Our results reveal a novel activity-dependent molecular pathway in dendritic microtubule regulation and suggest a pathological mechanism which may contribute to CDKL5 deficiency disorder.


Assuntos
Dendritos/metabolismo , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Síndromes Epilépticas/genética , Síndromes Epilépticas/metabolismo , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Espasmos Infantis/genética , Espasmos Infantis/metabolismo
16.
Prog Neuropsychopharmacol Biol Psychiatry ; 84(Pt B): 343-352, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29241837

RESUMO

Neuronal morphogenesis and synapse development is essential for building a functioning nervous system, and defects in these processes are associated with neurological disorders. Our understanding of molecular components and signalling events that contribute to neuronal development and pathogenesis is limited. Genes associated with neurodevelopmental and neurodegenerative diseases provide entry points for elucidating molecular events that contribute to these conditions. Several protein kinases, enzymes that regulate protein function by phosphorylating their substrates, are genetically linked to neurological disorders. Identifying substrates of these kinases is key to discovering their function and providing insight for possible therapies. In this review, we describe how various methods for kinase-substrate identification helped elucidate kinase signalling pathways important for neuronal development and function. We describe recent advances on roles of kinases TAOK2, TNIK and CDKL5 in neuronal development and the converging pathways of LRRK2, PINK1 and GAK in Parkinson's Disease.


Assuntos
Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Neurônios/patologia , Fosfotransferases/metabolismo , Sinapses/metabolismo , Animais , Humanos , Neurônios/metabolismo
17.
Life Sci Alliance ; 1(6): e201800118, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30623173

RESUMO

Cyclin G-associated kinase (GAK) is a ubiquitous serine/threonine kinase that facilitates clathrin uncoating during vesicle trafficking. GAK phosphorylates a coat adaptor component, AP2M1, to help achieve this function. GAK is also implicated in Parkinson's disease through genome-wide association studies. However, GAK's role in mammalian neurons remains unclear, and insight may come from identification of further substrates. Employing a chemical genetics method, we show here that the sodium potassium pump (Na+/K+-ATPase) α-subunit Atp1a3 is a GAK target and that GAK regulates Na+/K+-ATPase trafficking to the plasma membrane. Whole-cell patch clamp recordings from CA1 pyramidal neurons in GAK conditional knockout mice show a larger change in resting membrane potential when exposed to the Na+/K+-ATPase blocker ouabain, indicating compromised Na+/K+-ATPase function in GAK knockouts. Our results suggest a modulatory role for GAK via phosphoregulation of substrates such as Atp1a3 during cargo trafficking.

18.
Neuron ; 84(5): 968-82, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25456499

RESUMO

Mammalian Sterile 20 (Ste20)-like kinase 3 (MST3) is a ubiquitously expressed kinase capable of enhancing axon outgrowth. Whether and how MST3 kinase signaling might regulate development of dendritic filopodia and spine synapses is unknown. Through shRNA-mediated depletion of MST3 and kinase-dead MST3 expression in developing hippocampal cultures, we found that MST3 is necessary for proper filopodia, dendritic spine, and excitatory synapse development. Knockdown of MST3 in layer 2/3 pyramidal neurons via in utero electroporation also reduced spine density in vivo. Using chemical genetics, we discovered thirteen candidate MST3 substrates and identified the phosphorylation sites. Among the identified MST3 substrates, TAO kinases regulate dendritic filopodia and spine development, similar to MST3. Furthermore, using stable isotope labeling by amino acids in culture (SILAC), we show that phosphorylated TAO1/2 associates with Myosin Va and is necessary for its dendritic localization, thus revealing a mechanism for excitatory synapse development in the mammalian CNS.


Assuntos
Espinhas Dendríticas/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Neurônios/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Sinapses/fisiologia , Fatores Etários , Animais , Células Cultivadas , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/genética , Hipocampo/citologia , Humanos , MAP Quinase Quinase Quinases/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Long-Evans
19.
Neuron ; 73(6): 1127-42, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22445341

RESUMO

Dendrite arborization and synapse formation are essential for wiring the neural circuitry. The evolutionarily conserved NDR1/2 kinase pathway, important for polarized growth from yeast to mammals, controls dendrite growth and morphology in the worm and fly. The function of NDR1/2 in mammalian neurons and their downstream effectors were not known. Here we show that the expression of dominant negative (kinase-dead) NDR1/2 mutants or siRNA increase dendrite length and proximal branching of mammalian pyramidal neurons in cultures and in vivo, whereas the expression of constitutively active NDR1/2 has the opposite effect. Moreover, NDR1/2 contributes to dendritic spine development and excitatory synaptic function. We further employed chemical genetics and identified NDR1/2 substrates in the brain, including two proteins involved in intracellular vesicle trafficking: AAK1 (AP-2 associated kinase) and Rabin8, a GDP/GTP exchange factor (GEF) of Rab8 GTPase. We finally show that AAK1 contributes to dendrite growth regulation, and Rabin8 regulates spine development.


Assuntos
Dendritos/ultraestrutura , Espinhas Dendríticas/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neurônios/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Autoantígenos/metabolismo , Células Cultivadas , Eletroporação , Embrião de Mamíferos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Hipocampo/citologia , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos , Modelos Biológicos , Modelos Moleculares , Mutação/genética , Neurônios/fisiologia , Técnicas de Patch-Clamp , Fosforilação/genética , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Long-Evans , Sinapses/genética , Sinapses/fisiologia , Transfecção
20.
Proc Natl Acad Sci U S A ; 104(49): 19553-8, 2007 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-18048342

RESUMO

Dendritic spines are the major sites of excitatory synaptic transmission in the CNS, and their size and density influence the functioning of neuronal circuits. Here we report that NMDA receptor signaling plays a critical role in regulating spine size and density in the developing cortex. Genetic deletion of the NR1 subunit of the NMDA receptor in the cortex leads to a decrease in spine density and an increase in spine head size in cortical layer 2/3 pyramidal neurons. This process is accompanied by an increase in the presynaptic axon bouton volume and the postsynaptic density area, as well as an increase in the miniature excitatory postsynaptic current amplitude and frequency. These observations indicate that NMDA receptors regulate synapse structure and function in the developing cortex.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Espinhas Dendríticas/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/fisiologia , Animais , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Camundongos , Camundongos Knockout , Receptores de N-Metil-D-Aspartato/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...